Main Article Content
Abstract
Arbutus unedo L. fruit, rich in bioactive compounds with health bene-fits, experiences rapid softening and significant postharvest quality changes, affecting its consumer appeal and storage life. This study investigates the effect of osmotic dehydration (OD) on the physico-chemical composition, water loss (WL), sugar gain (SG), weight re-duction (WR) and color during drying. The fruit was subjected to OD using sucrose solutions of varying concentrations (30, 50, and 60 °Brix) and temperatures (30 and 40 °C). The fresh fruit exhibited a moisture content of 57 %, a pH of 4.37, and 16.90 % of total soluble solids (TSS). The total phenolic content of arbutus fruit was 15.62 ± 0.78 µg/mg extract and the total flavonoid content was 1.63 ± 0.06 µg/mg extract. Our findings revealed that OD at 30 °Brix enhanced the color and reduced the browning compared to untreated fruit (p < 0.05). OD using a 60 °Brix solution notably reduced the moisture con-tent by approximately 13% while simultaneously lowering the pH and increasing the TSS significantly (p < 0.05). These changes strong-ly correlated with WL, SG and sucrose concentration (R = 0.89, 0.79, and 0.82, respectively). OD prevented the color deterioration during drying with E ranging between 6.43 ± 3.37 and 19.97 ± 3.52. The study proposes that OD at 60 °Brix and 40 °C produces dried arbutus unedo fruit with reduced moisture content and minimized color dete-rioration after the application of convective drying, rendering it suit-able for industrial applications as functional food and the production of value-added dried berries.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Ahmed, I., Qazi, I. M., & Jamal, S. (2016). Developments in osmotic dehydration technique for the p¬reservation of fruits and vegetables. Innovative Food Science and Emerging Technologies, 34, 29–43. CrossRef
Amami, E., Khezami, W., Mezrigui, S., Badwaik, L. S., Bejar, A. K., Perez, C. T., & Kechaou, N. (2017). Effect of ultrasound-assisted osmotic dehydration pretreatment on the convective drying of strawberry. Ultrasonics sonochemistry, 36, 286-300. CrossRef
Alarcão-E-Silva, M. L. C. M. M., Leitão, A. E. B., Azinheira, H. G., & Leitão, M. C. A. (2001). The ar-butus berry: Studies on its color and chemical characteristics at two mature stages. Journal of Food Composition and Analysis, 14(1), 27–35. CrossRef
Albuquerque, B. R., Prieto, M. A., Barros, L., & Ferreira, I. C. F. R. (2017). Assessment of the stabil-ity of catechin-enriched extracts obtained from Arbutus unedo L . fruits : Kinetic mathemat-ical modeling of pH and temperature properties on powder and solution systems. Industrial Crops & Products, 99, 150–162. CrossRef
Asghari, A., Zongo, P. A., Osse, E. F., Aghajanzadeh, S., Raghavan, V., & Khalloufi, S. (2024). Re-view of osmotic dehydration: Promising technologies for enhancing products’ attributes, opportunities, and challenges for the food industries. Comprehensive Reviews in Food Sci-ence and Food Safety, 23(3), e13346. CrossRef
Bajoub, A., Ennahli, N., Ouaabou, R., Chaji, S., Hafida, H., Soulaymani, A., Idlimam, A., Merah, O., Lahlali, R., & Ennahli, S. (2023). Investigation into solar drying of Moroccan strawberry tree (Arbutus unedo L.) fruit: Effects on drying kinetics and phenolic composition. Applied Sci-ences, 13(2), 769. CrossRef
Boussalah, N., Boussalah, D., Cebadera-Miranda, L., Fernández-Ruiz, V., Barros, L., Ferreira, I. C., & Madani, K. (2018). Nutrient composition of Algerian strawberry-tree fruits (Arbutus un-edo L.). Fruits, 73(5), 283-297. CrossRef
Calín-Sánchez, Á., Lipan, L., Cano-Lamadrid, M., Kharaghani, A., Masztalerz, K., Carbonell-Barrachina, Á. A., & Figiel, A. (2020). Comparison of traditional and novel drying techniques and its effect on quality of fruits, vegetables and aromatic herbs. Foods, 9(9), 1261. CrossRef
de Bruijn, J., & Bórquez, R. (2014). Quality retention in strawberries dried by emerging dehydra-tion methods. Food Research International, 63, 42–48. CrossRef
Delgado-Pelayo, R., Gallardo-Guerrero, L., & Hornero-Méndez, D. (2016). Carotenoid composi-tion of strawberry tree (Arbutus unedo L.) fruits. Food chemistry, 199, 165-175. CrossRef
Dermesonlouoglou, E., Chalkia, A., & Taoukis, P. (2018). Application of osmotic dehydration to improve the quality of dried goji berry. Journal of Food Engineering, 232, 36-43. CrossRef
Dziki, D., Polak, R., Rudy, S., Krzykowski, A., Gawlik-Dziki, U., Rózyło, R., Miś, A., & Combrzyński, M. (2018). Simulation of the process kinetics and analysis of physicochemical properties in the freeze drying of kale. International Agrophysics, 32(1), 49–56. CrossRef
Enaru, B., Drețcanu, G., Pop, T. D., Stǎnilǎ, A., & Diaconeasa, Z. (2021). Anthocyanins: Factors af-fecting their stability and degradation. Antioxidants, 10(12), 1967. CrossRef
Falade, K. O., Igbeka, J. C., & Ayanwuyi, F. A. (2007). Kinetics of mass transfer, and colour chang-es during osmotic dehydration of watermelon. Journal of Food Engineering, 80(3), 979–985. CrossRef
Jansrimanee, S., & Lertworasirikul, S. (2020). Synergetic effects of ultrasound and sodium algi-nate coating on mass transfer and qualities of osmotic dehydrated pumpkin. Ultrasonics Sonochemistry, 69, 105256. CrossRef
Ghellam, M., Zannou, O., Galanakis, C. M., Aldawoud, T. M. S., Ibrahim, S. A., & Koca, I. (2021). Vacuum-assisted osmotic dehydration of autumn olive berries: Modeling of mass transfer kinetics and quality assessment. Foods, 10(10). CrossRef
Giraldo, G., Talens, P., Fito, P., & Chiralt, A. (2003). Influence of sucrose solution concentration on kinetics and yield during osmotic dehydration of mango. Journal of Food Engineering, 58(1), 33-43. CrossRef
Guendouze-bouchefa, N., Madani, K., Chibane, M., Boulekbache-makhlouf, L., Hauchard, D., Kiendrebeogo, M., Stévigny, C., Ndjolo, P., & Duez, P. (2015). Phenolic compounds , antioxi-dant and antibacterial activities of three Ericaceae from Algeria. Industrial Crops & Prod-ucts, 70, 459–466. CrossRef
Hamdan, N., Lee, C. H., Wong, S. L., Fauzi, C. E. N. C. A., Zamri, N. M. A., & Lee, T. H. (2022). Pre-vention of enzymatic browning by natural extracts and genome-editing: A review on recent progress. Molecules, 27(3), 1101. CrossRef
Islam, M. Z., Das, S., Monalisa, K., & Sayem, A. S. M. (2019). Influence of osmotic dehydration on mass transfer kinetics and quality retention of ripe papaya (Carica papaya L) during drying. AgriEngineering, 1(2), 220-234. CrossRef
Kaur, A., & Sogi, D. S. (2017). Effect of osmotic dehydration on physico‐chemical properties and pigment content of carrot (Daucus carota L) during preserve manufacture. Journal of Food Processing and Preservation, 41(5), e13153. CrossRef
Leahu, A., Ghinea, C., & Oroian, M. A. (2020). Osmotic dehydration of apple and pear slices: Color and chemical characteristics. Ovidius University Annals of Chemistry, 31(2), 73-79.79. CrossRef
Lemus-Mondaca, R., Miranda, M., Andres Grau, A., Briones, V., Villalobos, R., & Vega-Gálvez, A. (2009). Effect of osmotic pretreatment on hot air drying kinetics and quality of Chilean pa-paya (Carica pubescens). Drying Technology, 27(10), 1105–1115. CrossRef
Maieves, H. A., Ribani, R. H., Morales, P., & de Cortes Sánchez-Mata, M. (2015). Evolution of the nutritional composition of Hovenia dulcis Thunb. Pseudo fruit during the maturation pro-cess. Fruits, 70(3), 181-187. CrossRef
Mari, A., Parisouli, D.N., Krokida, M. (2024). Exploring osmotic dehydration for food preserva-tion: Methods, modelling, and modern Applications. Foods, 13(17), 2783. CrossRef
Masztalerz, K., Łyczko, J., & Lech, K. (2021). Effect of filtrated osmotic solution based on concen-trated chokeberry juice and mint extract on the drying kinetics, energy consumption and physicochemical properties of dried apples. Molecules, 26(11), 3274. CrossRef
Morales, D. (2022). Use of strawberry tree (Arbutus unedo) as a source of functional fractions with biological Activities. Foods, 11(23). CrossRef
Nowacka, M., Wiktor, A., Anuszewska, A., Dadan, M., Rybak, K., & Witrowa-Rajchert, D. (2019). The application of unconventional technologies as pulsed electric field, ultrasound and mi-crowave-vacuum drying in the production of dried cranberry snacks. Ultrasonics Sono-chemistry, 56, 1-13. CrossRef
Onwude, D. I., Hashim, N., Janius, R. B., Nawi, N. M., & Abdan, K. (2016). Modeling the thin-layer drying of fruits and vegetables: A review. Comprehensive Reviews in Food Science and Food Safety, 15(3), 599–618. CrossRef
Orak, H. H., Aktas, T., Yagar, H., Isbilir, S. S., Ekinci, N., & Sahin, F. H. (2011). Antioxidant activity, some nutritional and colour properties of vacuum dried strawberry tree (Arbutus unedo L.) fruit. Acta Scientiarum Polonorum, Technologia Alimentaria, 10(3), 331–338. Direct Link.
Orak, H. H., Aktas, T., Yagar, H., Isbilir, S. S., Ekinci, N., & Sahin, F. H. (2012). Effects of hot air and freeze drying methods on antioxidant activity, colour and some nutritional characteristics of strawberry tree (Arbutus unedo L.) fruit. Food Science and Technology International, 18(4), 391–402. CrossRef
Özcan, M. M., & Uslu, N. (2023). The effects of oven dehydration on bioactive compounds, antiox-idant activity, fatty acids and mineral contents of strawberry tree fruit. Processes, 11(2), 541. CrossRef
Özkan-Karabacak, A., Özcan-Sinir, G., Çopur, A. E., & Bayizit, M. (2022). Effect of osmotic dehy-dration pretreatment on the drying characteristics and quality properties of semi-dried (In-termediate) kumquat (Citrus japonica) slices by vacuum dryer. Foods, 11(14), 2139. Cross-Ref
Pashazadeh, H., Ali Redha, A., & Koca, I. (2024). Effect of convective drying on phenolic acid, fla-vonoid and anthocyanin content, texture and microstructure of black rosehip fruit. Journal of Food Composition and Analysis, 125, 105738. CrossRef
Porciuncula, B. D. A., Zotarelli, M. F., Carciofi, B. A. M., & Laurindo, J. B. (2013). Determining the effective diffusion coefficient of water in banana (Prata variety) during osmotic dehydra-tion and its use in predictive models. Journal of Food Engineering, 119(3), 490–496. Cross-Ref
Ramya, V., & Jain, N. K. (2017). A review on osmotic dehydration of fruits and vegetables: An in-tegrated approach. Journal of Food Process Engineering, 40(3), e12440. CrossRef
Ruiz-Rodríguez, B. M., Morales, P., Fernández-Ruiz, V., Sánchez-Mata, M. C., Cámara, M., Díez-Marqués, C., & Tardío, J. (2011). Valorization of wild strawberry-tree fruits (Arbutus unedo L.) through nutritional assessment and natural production data. Food Research Internation-al, 44(5), 1244-1253. CrossRef
Salem, I. B., Ouesleti, S., Mabrouk, Y., Landolsi, A., Saidi, M., & Boulilla, A. (2018). Exploring the nutraceutical potential and biological activities of Arbutus unedo L. (Ericaceae) fruits. In-dustrial Crops and products, 122, 726-731. CrossRef
Silva, M. A. da C., Silva, Z. E. da, Mariani, V. C., & Darche, S. (2012). Mass transfer during the os-motic dehydration of West Indian cherry. LWT - Food Science and Technology, 45(2), 246–252. CrossRef
Steet, J. A., & Tong, C. H. (1996). Degradation kinetics of green color and chlorophylls in peas by colorimetry and HPLC. Journal of Food Science, 61(5), 924–928. CrossRef
Takwa, S., Caleja, C., Barreira, J. C., Soković, M., Achour, L., Barros, L., & Ferreira, I. C. (2018). Ar-butus unedo L. and Ocimum basilicum L. as sources of natural preservatives for food indus-try: A case study using loaf bread. LWT-Food Science and Technology, 88, 47-55. CrossRef
Zielinska, M., & Markowski, M. (2017). Effect of microwave-vacuum, ultrasonication, and freez-ing on mass transfer kinetics and diffusivity during osmotic dehydration of cranberries. Drying Technology, 36(10), 1158–1169. CrossRef