Main Article Content

Abstract

This study allowed us to determine the appearance and pollen apertures of 200 individuals of Atrémesia herba alba from three areas in Algeria. The pollen morphology determined at the three stations studied is Tricolorpé, of which two grain shapes were encountered, spherical and elongated with three aper-tures and distinct diameters. Results obtained from pollen di-ameter measurements revealed a significant effect, which con-firms a very marked intra- and inter-population variability of this character. Indeed, the spherical pollen diameters vary be-tween 13.20 and 20 µm (Ain Dheb area) and between 16.56 and 29.90 µm in individuals from the two Chellala areas. The elon-gated pollen diameters from the Chellala region have diameters fluctuating between 34.31/25.46 to 29.90/16.56 µm and have diameters between 19/14.81 and 28.55 /18.54 µm for the Ain Dheb area.

Article Details

How to Cite
Maghni, B., Hammou, M. A., Maghni, A. B., Baghdache , W., Belkilali , N., & Khanfer , I. (2024). Intraspecific polymorphism of pollen grains in Artemisia herba Alba Asso in the Tiaret region (West of Algeria). Journal of Agriculture and Applied Biology, 6(1), 52-65. https://doi.org/10.11594/jaab.06.01.04

References

Akinnubi, F. M., Akinloye, A. J., & Oladipo, O. T. (2014). Pollen Grain Morphology of Some Select-ed Species of Asteraceae in South Western Nigeria. Research in Plant Biology, 4(6), 17-23.
Bahadur, S., Ahmad, M., Mir, S., Zafar, M., Sultana, S., Ashfaq, S., & Arfan, M. (2018). Identification of monocot flora using pollen features through scanning electron microscopy. Microscopy Research and Technique, 81(6), 599–613.
Bottraud, I. (1994). Pollen aperture polymorphism in the Angiosperms: importance, possible causes and consequences. Acta Botanica Gallica, 141, 109–122. CrossRef
Cai, M., Ye, P., Yang, X., & Li, C. (2019). Vegetation and climate change in the Hetao Basin (North-ern China) during the last interglacial-glacial cycle. Journal of Asian Earth Sciences., 171, 1–8. CrossRef
Cao, X., Tian, F., Li, K., Ni, J., Yu, X., Liu, L., & Wang, N. (2021). Lake surface sediment pollen da-taset for the alpine meadow vegetation type from the eastern Tibetan Plateau and its poten-tial in past climate reconstructions. Earth System Science Data, 13, 3525–3537. CrossRef
Charlotte, P. (2015). Évolution et Développement des grains de pollen chez les angiospermes. Université Paris Saclay (COmUE), Français [Evolution and Development of Pollen Grains in Angiosperms. Paris Saclay University (COmUE), French. NNT]. NNT: 2015SACLS201. HAL Id: tel-01282138. Direct Link.
Cui, Q. Y., Zhao, Y., Qin, F., Liang, C., Li, Q., & Geng, R. W. (2019). Characteristics of the modern pollen assemblages from different vegetation zones in Northeast China: Implications for pollen based climate reconstruction. Science China Earth Sciences., 62, 1564–1577. Cross-Ref
De Abreu, V. H. R., da Conceiç˜ao Santos, J., Esteves, R. L., & Gonçalves-Esteves, V. (2015). Pollen morphology of Praxelis (Asteraceae, Eupatorieae, Praxelinae) in Brazil. Plant Systematics and Evolution, 301(2), 599–608. CrossRef
Diot, M. F. (2000). Le végétal en archéologie : Pollen et palynologie [Plants in Archaeology: Pollen and Palynology]. Ed. CNRS. Périgueux. p19
Ghahreman, A., Noorbakhsh, S. N., Mehdigholi, K. & Attar, F. (2007). Pollen Morphology of Ar-temisia L. (Asteraceae). Iranian Journal of Botany, 13 (1): 21-29. Tehran
Grímsson, F., Grimm, G. W., & Zetter, R. (2017a). Tiny pollen grains: first evidence of Saururaceae from the Late Cretaceous of western North America. Peer J, 5:e3434 CrossRef
Grímsson, F., Grimm, G. W., Zetter, R., & Denk, T. (2016). Cretaceous and Paleogene Fagaceae from North America and Greenland: evidence for a Late Cretaceous split between Fagus and the remaining Fagaceae. Acta Palaeobotanica, 56, 247–305
Grímsson, F., Kapli, P., Hofmann, C., Zetter, R., & Grimm, G. W. (2017b). Eocene Loranthaceae pollen pushes back divergence ages for major splits in the family. Peer J, 5:e3373 CrossRef
Grímsson, F., Zetter, R., Halbritter, H., & Grimm, G. W. (2014). Aponogeton pollen from the Creta-ceous and Paleogene of North America and West Greenland: Implications for the origin and palaeobiogeography of the genus. Review of Palaeobotany and Palynology, 200, 161–187. CrossRef
Halbritter, H., Ulrich, S., Grímsson, F., Weber, M., Zetter, R., Hesse M., Buchner, R., Svojtka, M., & Frosch-Radivo, M. (2018). Illustrated Pollen Terminology, (2End). Springer.p487 CrossRef
Hayat, K., Khan, W. M., Khan, M. N., & Shah, S. N. (2023). Pollen morphological investigation of selected species of family Asteraceae from Pakistan by using light and scanning electron microscopy. Microscopy Research and Technique, 1–16. CrossRef
Hesse, M., M., Weber, R.. Buchner, A.. Frosch-Radivo., and Ulrich, S. (2009). Pollen Terminology – An illustrated handbook. Springer-Verlag Wien. Direct Link.
Hussain, A., Potter, D., Hayat, M. Q., Sahreen, S., & Bokhari, S. A. I. (2019). Pollen morphology and its systematic implication on some species of Artemisia herba-alba Asso. from Gilgit-Baltistan Pakistan. Bangladesh Journal of Plant Taxonomy, 26(2), 157–168. CrossRef
Jiang, L., Wang, Q., Ye, L., Lin, Yr. (2005). Pollen Morphology of Artemisia L. and Its Systematic Significance. Wuhan University Journal of Natural Sciences, 10(2): 448-454. CrossRef
Khan, S. U., Zafar, M., Ullah, R., Shahat, A. A., Ahmad, M., Sultana, S., & Malik, K. (2021b). Pollen diversity and its implications to the systematics of mimosaceous species by LM and SEM. Microscopy Research and Technique, 84(1), 42–55. CrossRef
Khan, S., Jan, G., Ahmad, M., Gul, F., Zafar, M., Mangi, J. U. D., Majeed, S. (2021a). Morpho-palynological assessment of some species of family Asteraceae and Lamiaceae of District Bannu, Pakistan on the bases of light microscope & scanning electron microscopy. Micros-copy Research and Technique, 84(6), 1220–1232. CrossRef
Koutsodendris, A., Allstadt, F. J., Kern, O. A., Kousis, I.,Schwarz, F., Vannacci, M., Woutersen, A., Appel, E., Berke,M. A., Fang, X. M., Friedrich, O., Hoorn, C., Salzmann, U., & Pross, J. (2019) . Late Pliocene vegetation turnover on the NE Tibetan Plateau (Central Asia) triggered by early Northern Hemisphere glaciation, Global Planet. Change, 180, 117–125, CrossRef
Kursat, M., Civelek, S., Baser, B., Ozbey, F., & Emre, I. (2023). Pollen morphology of Artemisia L. (Asteraceae) in Turkey and its systematic value. Grana, 62(4), 257–276. CrossRef
Lu, K. Q., Qin, F., Li, Y., Xie, G., Li, J. F., Cui, Y. M., Ferguson, D. K., Yao, Y. F., Wang, G. H., & Wang, Y. F. (2020). A new approach to interpret vegetation and ecosystem changes through time by establishing a correlation between surface pollen and vegetation types in the eastern central Asian desert. Palaeogeography, Palaeoclimatology, Palaeoecology, 551, 12. Cross-Ref
Lu, L. L., Jiao, B. H., Qin, F., Xie, G., Lu, K.Q., Li, J.F., Sun, B., Li, M., Ferguson, D. K., Gao, T.G., Yao, Y.F., & Wang, Y. F. (2022) Artemisia pollen dataset for exploring the potential ecological in-dicators in deep time. Earth System Science Data, 14, 3961–3995. CrossRef
Maghni, B., Adda, A., Merah, O., (2017). Evaluating morphological variability of Artemisia herba- alba asso from western Algeria. Journal of Fundamental and Applied Sciences, 9(1), 509–527. CrossRef
Maghni, B., Ait Hammou, M., Khedim, R., Maatoug, M., Hellal, B. (2020) Palynological study of angiosperms of rostomid park of Tiaret in Algeria. Journal of Fundamental and Applied Sci-ences, 12(1), 1-11. Direct Link.
Maghni, B., Bougoutaia, Y., Abderrabi, k., Adda, A., and Othmane, M. (2016). Optimization of DNA Extraction and PCR Conditions for Genetic Diversity Study in Artemisia herba-alba from Al-geria. Scientific Journal of Genetics Genes Therapy, 2(1), 010–012. CrossRef
Maghni, B., Hellal, B., Maatoug, M. (2018). Dynamics of the anatomical variability of Artemisia herba-alba in Algeria. Biosystems Diversity, 26(3), 239–244. CrossRef
McClelland, H. L. O., Halevy, I., Wolf-Gladrow, D. A., Evans, D., & Bradley, A. S. (2021). Statistical uncertainty in paleoclimate proxy reconstructions, Geophysical Research Letters, 48, e2021GL092773, CrossRef
Mignot, A., Hoss, C., Dajoz, I., Leuret, C., Henry, J.P., Dreuillaux, J.M., Heberle-Bors, E., & Till-bottraud, I. (1994). Pollen aperture polymorphism in the Angiosperms: importance, possi-ble causes and consequences. Acta Botanica Gallica, 141: 109–122. CrossRef
Muhammad, Q.H., Muhammad A., Mir A.K., Ghazalah, Y., Nighat, S., and Shazia, J. (2009). Phylo-genetic analysis of Artemisia L. (Asteraceae) based on micromorphological traits of pollen grains. African Journal of Biotechnology, 8 (23), 6561-6568. Direct Link.
PIerce, N.B., and Simpson, M.G. (2009). Polyaperturate pollen types and ratios of hetero-morphism in the monocot genus Conostylis (Haemodoraceae). Australian Systematic Bota-ny , 22, 16–30. Direct Link.
Ragho, K. S. (2020). Role of pollen morphology in taxonomy and detection of adulterations in crud drugs. Journal of Plant Science and Phytopathology, 4, 24–27. CrossRef
Roland, F., & Claude, J. (1989). Organisation Des Plantes à Fleurs [Organization of Flowering Plants]. (3rd Ed). Paris: Masson. Pp. 82-90
Stephen, A. (2014). Pollen: A microscopic wonder of plant kingdom. International Journal of Ad-vanced Research in Biological Sciences, 1(9),45–62. Direct Link.
Tierney, J. E., Poulsen, C. J., Montanez, I. P., Bhattacharya, T., Feng, R., Ford, H. L., Honisch, B., Inglis, G. N., Pe-tersen, S. V., Sagoo, N., Tabor, C. R., Thirumalai, K., Zhu, J., Burls, N. J., Fos-ter, G. L., Godderis, Y., Huber, B. T.,Ivany, L. C., Turner, S. K., Lunt, D. J., McElwain, J. C., Mills, B. J. W., Otto-Bliesner, B. L., Ridgwell, A., & Zhang, Y.G. (2020). Past climates inform our future, Science, 370, eaay3701, CrossRef
Till-Bottraud, I., Gouyon, P. H., Venable, D. L., and Godelle, B. (2001). The number of competitors providing pollen on a stigma strongly influences intraspecific variation in number of pollen apertures. Evolutionary Ecology Research, 3, 231–253.
Till-Bottraud, I., Vincent, M., Dajoz, I., & Mignot, A. (1999). Pollen aperture hetero-morphism.Variation in pollen-type proportions along altitudinal transects in Viola calcarata. Comptes Rendus de l’Académie des Sciences de Paris, Sciences de la Vie, 322: 579–589. Di-rect Link.
Torrell, M., Garcia-Jacas, N., Susanna, A., Valles, J. (1999). Phylogeny in Artemisia (Asteraceae, Anthemideae) Inferred from Nuclear Ribosomal DNA (ITS) Sequences,Taxon, 48, 721-736 Direct Link.
Ullah, F., Zafar, M., Ahmad, M., Dilbar, S., Shah, S. N., Sohail, A., Zaman, W., Iqbal, M., Bahadur, S. & Tariq, A. (2018). Pollen morphology of subfamily Caryophylloideae (Caryophyllaceae) and its taxonomic significance. Microscopy Research and Technique, 81(7): 704–715. CrossRef
Umber, F., Zafar, M., Ullah, R., Bari, A., Khan, M. Y., Ahmad, M., & Sultana, S. (2022). Implication of light and scanning electron micros-copy for pollen morphology of selected taxa of family Asteraceae and Brassicaceae. Microscopy Research and Technique, 85(1), 373–384. Cross-Ref
Watson, L. E., Bates, P. L., Evans, T. M., Unwin, M.M., & Estes, J. R. (2002). Molecular Phylogeny of subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera. BMC Evolutionary Biology, 2, 17. CrossRef
Wodehouse, R. P. (1928). Pollen Grain Morphology in the Classification of the Anthemideae, Bul-letin of the Torrey Botanical Club, 53, 479–485, CrossRef
Wu, F. L., Fang, X. M., & Miao, Y. F. (2020). Aridification history of the West Kunlun Mountains since the mid-Pleistocene based on sporopollen and microcharcoal records, Palaeogeogra-phy, Palaeoclimatology, Palaeoecology, 547, 109680, CrossRef
Zhao, Y. T., Miao, Y. F., Fang, Y. M., Li, Y., Lei, Y., Chen, X. M., Dong, W. M., & An, C. B. (2021). In-vestigation of factors affecting surface pollen assemblages in the Balikun Basin, central Asia: Implications for palaeoenvironmental reconstructions, Ecological Indicators, 123, 107332, CrossRef